Certain Norditerpenoid Alkaloids and Their Cardiovascular Action

Haridutt K. Desai, ${ }^{\dagger}$ Bradley P. Hart, ${ }^{\dagger}$ R. William Caldwell, \ddagger J ianzhong-Huang, \ddagger and S. William Pelletier*,† Institute for Natural Products Research and Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, and Department of Pharmacology and Toxi cology, Medical College of Georgia, Augusta, Georgia 30912

Received November 5, 1997
Thirteen new derivatives of norditerpenoid alkaloids, namely, 8-deacetyl-8-p-aminobenzoyldelphinine (1), 8-deacetyl-8-anthranoyldelphinine (2), 8-deacetyl-8-(4-hydroxy-3-methoxycinnamoyl)del phinine (3), 16-demethoxy-15,16-didehydro-8-p-anisoyl-14-benzoyldel phonine (4), 6 -acetylheteratisine N -oxide (6), 3,8-diacetylfal conerine (7), 8 -stearoylfal conerine (8), 8-linolenylfal conerine (9), 13-acetylpyrodel phinine (11), 13-acetyldel phinine N -oxide (13), N -deacetyl-8,9-diacetyllappaconitine (14), 8,9-(methylenedi oxy)lappaconine (15), and 16-epi pyroaconitine N -oxide (17), were prepared, and their structures were established by analysis of spectroscopic data (1D and 2D NMR, HRFABMS). The preliminary in vivo cardiovascular action (hypotensive, bradycardic, and ventricular arrhythmias) of these new compounds was tested in male Sprague-Dawley rats. The results are reported herein.

Certain diterpenoid alkaloids isolated from plant species in the genera Aconitum and Delphinium have hypotensive and bradycardic actions that may be due to activation of autonomic reflexes. ${ }^{1,2}$ These alkaloids share with veratridine the ability to sensitize sensory nerves by impeding closing of Na^{+}channels. ${ }^{2}$ These alkal oids may also elicit cardiovascular effects because of CNS activity. ${ }^{3,4}$ In a continuing study of the hypotensive and bradycardic activity of diterpenoid alkaloids and their derivatives, ${ }^{5}$ we have evaluated these alkaloids and their derivatives. The norditerpenoid alkaloid, lappaconitine, at a dose of $150 \mu \mathrm{~g} / \mathrm{kg}$ (iv, in dog) increased cardiac vagal afferent nerve activity (16.2%) and reduced cardiac sympathetic efferent nerve activity (12.5\%). An analogue, N-deacetyllappaconitine(NDAL), at this same dosage, increased cardiac vagal afferent nerve activity (40%) and reduced cardiac sympathetic efferent nerve activity (23.5\%). Both of these compounds also reduced arterial blood pressure and heart rate. ${ }^{5}$ In this work, the activity of the new compounds was compared with that of NDAL (see Table 1). We wish to report herein the preparation, characterization, and preliminary cardiovascular activity of 13 new derivatives of norditerpenoid alkaloids.

Results and Discussion

Compounds 1-3, 8, and $\mathbf{9}$ were prepared from their parent alkaloids according to our method of transesterification. ${ }^{6}$ The reactions were carried out as described, and the major products ($40-70 \%$) that were formed were isolated by fractionation on $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2} rotors of a Chromatotron. ${ }^{7}$ The compounds were identified and characterized on the basis of their spectroscopic data (IR, HRMS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR including 2D NMR), which are reported in the Experimental Section. In the case of the trans-esterification reaction of p-anisic acid with del phinine, no reaction occurred under the usual

[^0]Table 1. Hypotensive and Bradycardic Actions of Compounds 1-5, 7-10, 12-14, 16, and 18

compound	Dosage			
	$200 \mu \mathrm{~g} / \mathrm{kg}$		$400 \mu \mathrm{~g} / \mathrm{kg}$	
	\% $\Delta H R^{\text {a }}$	\% $\triangle \mathrm{BP}^{\text {b }}$	\% $\Delta \mathrm{HR}^{\text {a }}$	$\% \Delta \mathrm{BP}^{\text {b }}$
NDALC	-12.7	-27.2	-14.8	-57.6
1	-8.4	-42.4	-14.8	-38.0
2	-4.2	-20.8	-2.0	0.0
3	-8.3	-8.8	-8.3	-10.6
4	-3.7	0.0	-3.8	-9.2
5	-18.8	-28.1	-8.9	-7.6
7	caused	ntricular	hythmias	
8	0.0	-15.3	-24.5	-53.4
9	-8.5	-30.3	-24.5	-53.4
10	-5.4	-13.2	0.0	0.0
12	-7.7	-23.1	-8.1	- 14.3
13	-3.8	0.0	-8.7	-13.4
14	0.0	0.0	0.0	0.0
16	-5.7	-26.0	-5.6	-16.4
18	0.0	-22.6	-3.0	-27.6

${ }^{\text {a }} \Delta \mathrm{HR}=$ Diference in heart rate. ${ }^{\mathrm{b}} \Delta \mathrm{BP}=$ Diference in blood pressure. ${ }^{\text {c }}$ NDAL $=\mathrm{N}$-deacetyllappaconitine as reference agent (tested in 3 rats).
conditions. All of the p-anisic acid sublimed, and the starting material, del phinine, was recovered unchanged. Heating a mixture of delphinine and p-anisic acid in pyridine resulted in trans-esterification, and the major product formed was identified as 16 -demethoxy-15,16-didehydro-8-p-anisoyl-14-benzoyIdel phonine (4) (31.3\%). This result indicates that isomerization occurred during trans-esterification, and an isopyrocompound (4) was formed. Earlier we have observed this type of reaction taking place during trans-esterification. ${ }^{6}$
Compounds 7, 10, and $\mathbf{1 4}$ were prepared by acetyl ating the parent alkaloids with acetyl chloride. Acidic hydrolysis of 8,9-diacetyllappaconitine afforded compound 14.
Compounds $\mathbf{1 5}$ and $\mathbf{1 6}$ were prepared in yields of 61 and 32%, respectively, by methylenation of the cis-diol, as described in our published work on methylenation of some lycoctonine-type norditerpenoid alkaloids. ${ }^{8}$ Details of the preparation, and physical and spectroscopic data are reported in the Experimental Section.

The N-oxides 13 and 15 were prepared according to our published procedure. ${ }^{9}$ Their characterization is also reported here.

Compounds 1-5, 7-10, 12-14, 16, and 18 were tested in two to three rats (male Sprague-Dawley, 250300 g), at doses of 200 and $400 \mu \mathrm{~g} / \mathrm{kg}$ (iv) for their ability to produce hypotension, bradycardia, and cardiac arrhythmias (Table 1). The testing was carried out as described in the Experimental Section. 3,8-Diacetylfal conerine (7) caused arrhythmias at both doses. The following compounds exhibited prominent hypotensive and bradycardic activity without prominent arrhythmias: heteratisine N -oxide (5); ${ }^{7}$ 8-deacetyl-8-p-aminobenzoyldel phinine (1); 8-deacetyl-8-anthranoyldel phinine (2); 8-stearoylfalconerine (8); 8-linolenylfal conerine (9); pyrodelphinine (12);6 16-epipyroaconitine (18); ${ }^{6}$ and 8,9-(methylenedioxy)lappaconitine (16). ${ }^{11}$ These compounds produced at least a 10% fall in heart rate or a 20% decline in blood pressure with either the 200 or $400 \mu \mathrm{~g} / \mathrm{kg}$ (iv) dose. Responses routinely lasted from 5 to 10 min . The other agents 16-demethoxy-15,16-dide-hydro-8-p-anisoyl-14-benzoyl delphonine (4); 8-deacetyl-8-(4-hydroxy-3-methoxycinnamoyl)del phinine (3); 3,13diacetyl pseudaconitine (10), N-deacetyl-8,9-di acetyllappaconitine (14); and 13-acetyldelphinine N -oxide (13) did not show good hypotensive and bradycardic activity (Table 1).

Compounds showing prominent hypotensive and bradycardic activity without cardiac arrhythmias in rats will be further tested in dog models. The results will be published when available.

Experimental Section

General Experimental Procedures. Melting points are corrected and were determined on a Thomas-K ofler hot stage equipped with a microscope and a polarizer. Optical rotations were measured on a Perkin-Elmer model 141 polarimeter in CHCl_{3}. IR spectra were obtained on a Perkin-Elmer model 1420 spectrophotometer in Nujol. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (including DEPT), and 2D NMR spectra were recorded in CDCl_{3}, on a Bruker AC300 instrument equipped with the standard Bruker software. HRFABMS were recorded on AutoSpec FAB ${ }^{+}$ and ESIMS were recorded on a Perkin-EImer SCIEX API-1 mass spectrometer. Isolation of the reaction products was carried out through separations on $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($1 \mathrm{~mm}, \mathrm{EM}-1104$) or SiO_{2} ($1 \mathrm{~mm}, \mathrm{EM}-7741$) rotors of a Chromatotron. Purification of a sample was carried out by passing a CHCl_{3} solution over a small column (9-in. disposable pipette filled with $3-4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$) of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral, activity III).

Pharmacological Testing. Male Sprague-Dawley rats ($250-300 \mathrm{~g}$) were anesthetized with pentobarbital sodium ($50 \mathrm{mg} / \mathrm{kg}$, ip). Rats were intubated and artificially ventilated with a Harvard respirator under a positive pressure of 10 cm of $\mathrm{H}_{2} \mathrm{O}$. The left jugular vein was cannulated with a polyethylene catheter for agent administration. A second catheter (PE-50) filled with heparinized saline was inserted in the left carotid artery and connected to a Statham pressure transducer for blood pressure measurements as monitored on a Grass 7D polygraph. Systolic blood pressure signals were used to trigger a cardiotachometer for measuring heart rate. A lead II electrocardiogram was also monitored. After

$1 \mathrm{R}=\mathrm{p}$ - aminobenzoy
$\begin{array}{ll}1 & R=p-a m i n o b l \\ 2 & R=\text { anthranoy }\end{array}$
$3 R=4$-hydroxy-3-methoxycinnamoyl

$$
7 R^{1}=O A C, R^{2}=H, R^{3}=A C
$$

$$
8 \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\text { stearoy }
$$

$$
9 R^{1}=O H, R^{2}=H, R^{3}=\text { linclenyl }
$$

$$
10 R^{1}=R^{2}=O A C, R^{3}=A C
$$

$4 \mathrm{An}=p$-anisoyl

13

a stabilization period of 30 min , agents were infused intravenously using a micro-syringe infusion pump. Agents were dissolved in distilled $\mathrm{H}_{2} \mathrm{O}(250-500 \mu \mathrm{~g} / \mathrm{mL})$ after being solubilized by the addition of small volumes of 0.1 N HCl . Agents were given initially at a dosage level of $200 \mu \mathrm{~g} / \mathrm{kg}$ in a volume of 0.2 mL . When the hemodynamic functions returned back to baseline values, a second dosage of $400 \mu \mathrm{~g} / \mathrm{kg}$ (also in 0.2 mL) was infused. The infusion rate was $0.4 \mathrm{~mL} / \mathrm{min}$.

The mean baseline blood pressure value in rats was $96.2 \pm 4.7 \mathrm{~mm} \mathrm{Hg}$. The mean heart rate for rats was 352.6 ± 18.3 beats/min.
General Procedure for Preparation of C-8-Substituted Esters (Compounds 1-3, 8, and 9). The
norditerpenoid alkaloids having a C-8 acetyl group and the appropriate acid (in excess) were mixed and placed into a small sublimation apparatus and then heated in an oil bath ($110{ }^{\circ} \mathrm{C}$) for 3 h . High vacuum was applied during heating ($0.1-0.5 \mathrm{~mm} / \mathrm{Hg}$). The cold reaction mixture was then dissolved in CHCl_{3}, and the solution was passed through a basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activity III) column followed by a separation on a Chromatotron rotor $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ or $\left.\mathrm{SiO}_{2}\right)$ with a gradient of hexane, CHCl_{3}, and EtOH .

8-Deacetyl-8-p-aminobenzoyldelphinine (1). Delphinine ($101 \mathrm{mg}, 0.168 \mathrm{mmol}$) and p -aminobenzoic acid ($150 \mathrm{mg}, 1.09 \mathrm{mmol}$) were mixed thoroughly, and the reaction was carried out as described above. The workup and fractionation of the reaction mixture on a SiO_{2} rotor of a Chromatotron (as described in the general procedure) gave the amorphous product 1 (47 $\mathrm{mg}, 53.1 \%$): $[\alpha]_{\mathrm{D}}+37.2^{\circ}$ (c 1.1); IR $v_{\max } 3470,3370$, $3230,1715,1695,1605,1520,1450,1275,1170,1120$, 1093, 752 and $705 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.35$ (3H, s, N-Me), 2.86, 3.22, 3.27, 3.55 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), 4.95 (1 H , $\left.\mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{H}-14^{\beta}\right), 6.28\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right)$, $7.12\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime}\right), 7.43\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 85.0$ (d, C-1), 26.3 (t, C-2), 34.6 (t, C-3), 39.2 (s, C-4), 48.6 (d, C-5), 83.0 (d, C-6), 48.3 (d, C-7), 85.4 (s, C-8), 45.4 (d, C-9), 41.2 (d, C-10), 50.2 (s, C-11), 35.5 (t, C-12), 74.9 (s, C-13), 79.0 (d, C-14), 39.3 (t, C-15), 83.6 (d, C-16), 63.3 (d, C-17), 80.2 (t, C-18), 56.1 (t, C-19), 42.5 (q, C-20), 56.5 (q, OM e-1), 57.9 (q, OMe-6), 58.6 (q, OMe-16), 59.0 ($q, O M e-18$), 166.2 (s, $\mathrm{C}=\mathrm{O}$ benzoyl), 129.3 (s, C-1'), 128.5 (d, C-2', 6^{\prime}), 129.7 (d, C-3', 5^{\prime}), 132.6 (d, C-4'), 165.3 ($s, C=0, p$-aminobenzoyl), 119.9 (s, C-1"), 127.8 (d, C-2", $6^{\prime \prime}$), 113.2 (d, C-3", $5^{\prime \prime}$), 150.3 (s, C-4"); HRFABMS m/ z 677.3438 [M $+1]^{+}$for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 677.3438$).

8-Deacetyl-8-anthranoyldelphinine (2). Delphinine ($100 \mathrm{mg}, 0.166 \mathrm{mmol}$) and anthranilic acid (200 $\mathrm{mg}, 1.45 \mathrm{mmol})$ were mixed thoroughly. The reaction and workup were carried out as described in the general procedure. The residue obtained after purification of the reaction mixture over an alumina column, was fractionated on a silica rotor of a Chromatotron. On the basis of theTLC results fractions were combined to give amorphous product 2 ($47.3 \mathrm{mg} 53.4 \%$): [$\alpha]_{\mathrm{D}}+40.3^{\circ}$ (c $1.2)$; IR $v_{\max } 3485,3365,1715,1680,1608,1585,1480$, 1452, 1280, 1230, 1115, 1090, 1030, 985, 750 and 720 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 2.60$ (3H, s, N-Me), 2.94, 3.24, 3.29, 3.54 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), $4.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$, $\left.\mathrm{H}-14_{\beta}\right), 6.24\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 6.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.8.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 7.00\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 7.15(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.30\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$, 7.37 (1H, d, J $\left.=8.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 7.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}$, H-2',6'); ${ }^{13} \mathrm{C}$ NMR $\delta 83.7$ (d, C-1), 25.2 (t, C-2), 39.5 (t , C-3), 38.9 (s, C-4), 48.5 (d, C-5), 83.1 (d, C-6), 46.9 (d, C-7), 85.2 ($s, C-8$), 45.1 (d, C-9), 40.9 (d, C-10), 50.5 (s, C-11), 35.3 (t, C-12), 74.8 (s, C-13), 78.8 (d, C-14), 32.7 (t, C-15), 82.8 (d, C-16), 64.0 (d, C-17), 79.6 (t, C-18), 56.5 (t, C-19), 42.6 (q, C-20), 56.2 (q, OMe-1), 58.1 (q, OMe-6), 58.8 (q, OMe-16), 59.0 (q, OMe-18), 167.0 (s, $\mathrm{C}=\mathrm{O}$ benzoyl), 129.5 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 128.0 ($\mathrm{d}, \mathrm{C}-2^{\prime}, 6^{\prime}$), 129.7 (d, C-3', 5^{\prime}), 134.7 (d, C-4'), 166.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ anthranoyl), 110.6 (s, C-1"), 150.2 (s, C-2"), 116.2 (d, C-3"), 133.6 (d, C-4"), 131.0 (d, C-5"), 116.0 (d, C-6"); HRFABMS m/ z
$677.3438[M+1]^{+}$for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9}\left(\right.$ calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 677.3438).

8-Deacetyl-8-(4-hydroxy-3-methoxycinnamoyl)delphinine (3). Delphinine ($101.2 \mathrm{mg}, 0.168 \mathrm{mmol}$) and trans-4-hydroxy-3-methoxycinnamic acid (Aldrich, $151.1 \mathrm{mg}, 0.78 \mathrm{mmol}$) were thoroughly mixed, and the reaction and the workup were carried out as described in the general procedure. After fractionation on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotor of a Chromatotron the product 3 (49.3 mg , 39.8\%) was obtained as an amorphous solid: $[\alpha]_{D}+$ 18.2° (c 1.2); IR $\nu_{\max }, 3500,1715,1695,1630,1600,1525$, 1455, 1270, 1155, 1120, 1095, 1032, 982, 752 and 710 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 2.36$ (3H, s, N-Me), 2.89 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17$), 3.09, 3.26, 3.29, 3.52 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), $3.85(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Ar}-\mathrm{OMe}$), 4.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-14_{\beta}$), $5.12-6.72$ $(5 \mathrm{H}$, complex cinnamoyl protons), $7.17(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.26$ (1H, t, J $=7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$), 8.00 (2H, d, $\left.\mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 84.9$ (d, C-1), 26.3 (t , C-2), 34.6 (t, C-3), 39.3 (s, C-4), 48.8 (d, C-5), 83.5 (d, C-6), 48.2 (d, C-7), 85.3 ($s, C-8$), 45.1 (d, C-9), 41.1 (d, C-10), 50.2 ($\mathrm{s}, \mathrm{C}-11$), 35.4 ($\mathrm{t}, \mathrm{C}-12$), 74.9 ($\mathrm{s}, \mathrm{C}-13$), 78.9 (d, C-14), 39.3 (t, C-15), 82.8 (d, C-16), 63.4 (d, C-17), 80.3 (t, C-18), 56.1 (t, C-19), 42.5 (q, C-20), 56.5 (q, OMe1), 57.9 (q, OM e-6), 58.7 (q, OM e-16), 59.1 ($q, O M e-18$), 166.8 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ benzoyl), 129.5 (s, C-1'), 128.2 ($\mathrm{d}, \mathrm{2}^{\prime}, 6^{\prime}$), 129.6 (d, 3', 5^{\prime}), 132.8 (d, C-4'), 165.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ cinnamoyl), 144.2 ($\mathrm{d}, \mathrm{C}=\mathrm{O}-\mathrm{CH}=\mathrm{CH}-), 136.5(\mathrm{~d}, \mathrm{C}=\mathrm{O}-\mathrm{CH}=\mathrm{CH}-$), 126.5 (s, C-1"), 122.9 (d, C-2"), 147.8 (s, C-3"), 146.4 (s, C-4"), 109.2 (d, C-5"), 120.0 (s, C-6"); HRFABMS m/ z $734.3540[\mathrm{M}+1]^{+}$for $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{NO}_{11}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 734.3540).

16-Demethoxy-15,16-didehydro-8-p-anisoyl-14benzoyldelphonine (4). ${ }^{10}$ Delphinine ($90.2 \mathrm{mg}, 0.15$ mmol) and p-methoxybenzoic acid ($150.1 \mathrm{mg}, 0.98 \mathrm{mmol}$) were mixed thoroughly, and seven drops of pyridine were added to the mixture. The open flask was heated in an oil bath at $110^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was worked up as described in the general procedure. Fractionation (two times) of the residue on $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotors gave an amorphous compound 4 ($31.1 \mathrm{mg}, 31.3 \%$): $[\alpha]_{D}$ -3.2° (c 0.42); IR $\nu_{\max } 3450,1710,1605,1510,1450$, 1380, 1290, 1260, 1170, 1120, 1090, 1030, 985, 751 and $713 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.32$ (3H, s, N-Me), 2.93 (3H, s, OMe-1), 3.27 (3H, s, OMe-6), 3.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e-18)}$, (1H, br s, H-17), 3.22, 3.65 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}$, $\mathrm{H}-18), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OMe}), 4.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}$, $\left.\mathrm{H}-6_{\beta}\right), 5.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-14_{\beta}\right), 6.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 10.5, 1.5 Hz, H-16), 6.53 (1H, d, J $=10.5 \mathrm{~Hz}, \mathrm{H}-15$), $7.03\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right), 6.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.03$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 85.1$ (d, C-1), 26.3 (t, C-23, 39.3 (t, C-3), 39.5 (s, C-4), 48.9 (d, C-5), 82.3 (d, C-6), 44.8 (d, C-7), 83.7 (s, C-8), 44.7 (d, C-9), 42.3 (d, C-10), 50.1 (s, C-11), 35.0 (t, C-12), 76.2 (s, C-13), 78.3 (d, C-14), 125.7 (d, C-15), 137.3 (d, C-16), 64.4 (d, C-17), 80.6 (t, C-18), 56.1 ($t, C-19$), 42.6 ($q, C-20$), 57.5 (q, OMe-1), 56.5 ($q, O M e-6$), 59.2 (q, OMe18), 167.4 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ benzoyl), 129.6 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 127.9 (d , C-2', 6^{\prime}), 129.7 ($\left.d, C-3^{\prime}, 5^{\prime}\right), 132.8$ ($\left.d, C-4^{\prime}\right), 164.7$ ($s, C=0$ p-anisoyl), 122.9 (s, C-1"), 131.2 (d, C-2", $6^{\prime \prime}$), 162.7 (s, C-4"), 113.3 (d, C-3", $5^{\prime \prime}$), 55.3 (q, OMe-Ar); HRFABMS $\mathrm{m} / \mathrm{z} 660.3172[\mathrm{M}+1]^{+}$for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{NO}_{9}\left(\right.$ calcd $[\mathrm{M}+1]^{+}$ m/ z 660.3172).
6-Acetylheteratisine \mathbf{N}-oxide (6). To a solution of m-CPBA ($300 \mathrm{mg}, 1.73 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL}) \mathrm{a}$
solution of 6-acetylheteratisine ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added, and the reaction mixture was stirred for 7 h at room temperature and then left overnight (17 h) in a refrigerator. The reaction mixture was passed over a column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (50 g , neutral activity III), and the column was washed with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{~mL}$ fractions). The first two fractions gave the desired N -oxide 6 (85.1 $\mathrm{mg}, 82 \%$) as an amorphous solid: $[\alpha]_{\mathrm{D}}+10.5^{\circ}$ (c 0.195); IR $\nu_{\max } 3420,1735,1250,1220,1090,1060$ and 750 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18), 1.42(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5$ $\mathrm{Hz}, \mathrm{N}-\mathrm{CH}_{2} \mathrm{Me}$), 2.05 (3H, s, OAc), 2.69 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2$ Hz, H-9), 3.29 (3H, s, OMe), 3.92 (1H, br s, H-17), 4.70 $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-13), 5.13\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-6_{\alpha}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 85.9$ (d, C-1), 24.2 (t, C-2), 35.2 (t, C-3), 37.5 (s, C-4), 53.4 (d, C-5), 74.6 (d, C-6), 51.8 (d, C-7), 75.1 (s, C-8), 48.4 (d, C-9), 44.2 (d, C-10), 48.9 (s, C-11), 29.2 (t, C-12), 71.3 (d, C-13), 172.7 (s, C-14), 35.0 (t, C-15), 29.1 (t, C-16), 77.5 (d, C-17), 26.0 (q, C-18), 78.1 (t, C-19), 66.7 (t, C-20), 7.8 (q, C-21), 56.4 (q, OMe-1) 170.9 s and 21.5 q (OAc-6); ESIMS m/ z $450.2[\mathrm{M}+1]^{+}$for $\mathrm{C}_{24} \mathrm{H}_{35}-$ NO_{7}.

3,8-Diacetylfalconerine (7). 8-Acetylfalconerine ($76 \mathrm{mg}, 0.113 \mathrm{mmol}$) was dissolved in pyridine (0.5 mL) and $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The mixture was warmed on a steam bath for 5 min and then left at room temperature for 40 h . Distilled $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the icecold solution was basified to pH 10 with $10 \% \mathrm{NaOH}$ solution and extracted with $\mathrm{CHCl}_{3}(70 \mathrm{~mL} \times 3)$. The combined CHCl_{3} extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a gum (85 mg). Fractionation of the gum on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotor of a Chromatotron furnished an amorphous solid ($47 \mathrm{mg}, 52 \%$), which crystallized from $\mathrm{Me}_{2} \mathrm{CO}$-hexane as plates: mp $191-193{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+18.6^{\circ}$ (c 1.25); IR $v_{\max } 1730,1595$, 1582, 1525, 1290, 1270, 1240, 1220, 1175, 1125, 1085, 1020, 970, 925, 892, 830, 752, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.08$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{Me}\right), 1.35$ (3H, s, C-8 OAc), 2.05 (3H, s, C-3 OAc), 2.86 (1H, br s, H-17), 3.11 (1H , t, $\mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-6$), 3.19, 3.20, 3.24, 3.37 (each $3 \mathrm{H}, \mathrm{s}, 4 \times$ OMe), 3.90, 3.92 (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Ar}-\mathrm{OMe}$), 3.84 (1H, d, $\left.\mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{H}-18_{\mathrm{a}}\right), 3.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 2.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.9 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{~b}), 3.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-16), 4.14(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1), 4.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3_{\beta}\right), 5.02(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}$, $\left.\mathrm{H}-14_{\beta}\right), 6.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.62\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right)$, 7.67 (1H, dd, J = 8.5, 1.7 Hz, H-6'); ${ }^{13} \mathrm{C}$ NMR $\delta 83.6$ (d, C-1), 32.0 (t, C-2), 71.6 (d, C-3), 42.3 (s, C-4), 49.3 (d, C-5), 81.9 (d, C-6), 44.4 (d, C-7), 85.6 (s, C-8), 43.8 (d, C-9), 46.3 (d, C-10), 50.0 (s, C-11), 28.6 (t, C-12), 39.2 (d, C-13), 75.2 (d, C-14), 37.9 (t, C-15), 82.8 (d, C-16), 61.1 (d, C-17), 71.5 (t, C-18), 48.9 (t, C-19), 47.6 (t, C-20), 13.4 (q, C-21), 56.0 (q, OMe-1), 58.1 (q, OM e-6), 56.6 (q, OMe-16), 58.8 ($q, O M e-18$), 166.0 (s, $\mathrm{C}=\mathrm{O} \mathrm{Vr}$), 123.2 (s , C-1'), 112.0 (d, C-2'), 148.6 (s, C-3'), 152.9 (s, C-4'), 110.3 (d, C-5'), 123.6 (d, C-6'), 170.3 (s) and 21.2 (q) (OAc-3), 169.7 (s) and 21.7 (q) (OAc-8); HRFABMS m/ z 716.3646 for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{NO}_{12}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 716.3645$).

8-Stearoylfalconerine (8). 8-Acetylfal conerine (100 $\mathrm{mg}, 0.148 \mathrm{mmol}$) and stearic acid ($200 \mathrm{mg}, 0.7 \mathrm{mmol}$) were thoroughly mixed. The reaction and workup were carried out as described in the general procedure to give 8 (70 mg, 52.5\%) as an amorphous solid, $[\alpha]_{D}+4.5^{\circ}$ (c 1.4); IR $v_{\max } 3520,1720,1600,1515,1375,1350,1295$, 1270, 1220, 1180, 1100, 1030, 982, 915, 880, $785 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.86\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{H}-18{ }^{\prime \prime}\right)$, $1.06(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$
$\left.=7 \mathrm{~Hz}, \mathrm{~N}-\mathrm{CH}_{2} \mathrm{Me}\right), 1.90$ and 2.31 (m, H-12), 1.89 and 2.30 (m, H-2), 2.13 (m, H-7), 2.42 (m, H-13), 2.43 (m, $\mathrm{H}-9), 2.36$ and $2.82(\mathrm{~m}, \mathrm{H}-19), 2.50\left(\mathrm{~m}, \mathrm{~N}-\mathrm{CH}_{2}\right), 2.21$ and 2.92 (m, H-15), 2.76 (m, H-10), 2.78 (s, H-17), 3.10 (m, $\mathrm{H}-1$), 3.02 (s, H-5), 3.32 (m, H-16), 3.12, 3.20, 3.24, 3.35 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), 3.41 and 3.61 (each d, J $=8.8$ $\mathrm{Hz}, \mathrm{H}-18), 3.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8$ and $4 \mathrm{~Hz}, \mathrm{H}-3), 4.08(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{H}-6), 5.02\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{H}-14_{\beta}\right), 6.82$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), $7.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, 7.64 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 1.25 ($\mathrm{m}, \mathrm{H}-4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}$, 17"), 1.38 (m, H-3"), 1.20 (m, H-7", $8^{\prime \prime}, 9^{\prime \prime}, 10^{\prime \prime}, 11^{\prime \prime}, 12^{\prime \prime}$, $\left.13^{\prime \prime}, 14^{\prime \prime}, 15^{\prime \prime}\right), 1.10$ (m, H-16"); ${ }^{13} \mathrm{C}$ NMR $\delta 82.3$ (d, C-1), 33.1 (t, C-2), 71.6 (d, C-3), 42.9 (s, C-4), 48.5 (d, C-5), 83.5 (d, C-6), 44.9 (d, C-7), 85.5 (s, C-8), 46.3 (d, C-9), 43.5 (d, C-10), 50.5 ($\mathrm{s}, \mathrm{C}-11$), 28.1 (t, C-12), 39.4 (d, C-13), 75.3 (d, C-14), 38.4 (t, C-15), 82.8 (d, C-16), 61.2 (d, C-17), 77.8 (t, C-18), 48.6 (t, C-19), 47.6 (t, C-20), 13.2 (q, C-21), 55.6 (q, OM e-1), 57.9 (q, OM e-6), 55.7 (q, OMe16), 59.1 (q, OMe-18), 55.9 and 55.8 (each q, OM e-Vr), 165.8 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ Vr), 122.8 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 110.2 (d, C-2'), 148.6 (s, C-3'), 152.9 (s, C-4'), 111.9 (d, C-5'), 123.6 (d, C-6'), 172.5 (s, C=O stearoyl), 34.7 (t, C-2"), 24.2 (t, C-3"), 29.2 (t, C-4"), 29.2 ($\mathrm{t}, \mathrm{C}-5^{\prime \prime}$), 29.3 ($\mathrm{t}, \mathrm{C}-6^{\prime \prime}$), 29.4 ($\mathrm{t}, \mathrm{C}-7^{\prime \prime}$), 29.6 (t, C-8",15"), 31.8 (t, C-16"), 22.6 (t, C-17"), 14.0 (q, C-18"); HRFABMS m/ z $898.6044[\mathrm{M}+1]^{+}$for $\mathrm{C}_{52} \mathrm{H}_{83}$ NO_{11} (calcd [M + 1] ${ }^{+} \mathrm{m} / \mathrm{z} \mathrm{898.6044)}$.
8-Linolenylfal conerine (9). 8-Acetylfal conerine (80 $\mathrm{mg}, 0.12 \mathrm{mmol}$) and linolenic acid ($200 \mathrm{mg}, 0.73 \mathrm{mmol}$) were mixed thoroughly. The reaction and the workup were carried out as per the general procedure to give 9 ($47.2 \mathrm{mg}, 44.5 \%$) as a thick oil: $[\alpha]_{\mathrm{D}}+9.2^{\circ}$ (c 1.42); IR $v_{\max } 3505,1715,1600,1513,1345,1270,1225,1180$, 1100, 1040, 980, 910, 858, $765 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.94$ (3H, t, J $\left.=7 \mathrm{~Hz}, \mathrm{H}-18^{\prime \prime}\right), 1.04(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-21)$, 2.50 ($\mathrm{m}, \mathrm{H}-20$), 1.91 and 2.12 (m, H-2), 2.13 (m, H-7), 2.15 (m, H-10), 2.43 (m, H-13), 2.22 and 2.90 ($\mathrm{m}, \mathrm{H}-15$), 1.98 and 2.28 ($\mathrm{m}, \mathrm{H}-12$), 2.47 and 2.82 (m, H-19), 2.76 (m, H-9), 2.78 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17$), 3.17 (m, H-1), 3.05 ($1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-5), 3.35$ (m, H-16), 3.42 and 3.61 (each d, J $=8.8 \mathrm{~Hz}$, $\mathrm{H}-18), 3.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8$ and $4 \mathrm{~Hz}, \mathrm{H}-3), 3.15,3.24$, 3.31, 3.38 (each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OMe}$), $4.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}$, $\mathrm{H}-6), 5.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{H}-14), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.8.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.68(1 \mathrm{H}$, dd, J $=8.4,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 3.87, 3.88 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Vr}-$ OMe), 1.91 and 2.32 (m, H-2"), 1.07 and 25 (m, H-3"), 0.81-1.22 (m, H-4", 5", $6^{\prime \prime}$), 1.25 (m, H-7"), 2.00 (m, H-8"), 5.35, 5.38 (m, H-9", $\left.10^{\prime \prime}\right), 2.78$ (m, H-11"), 5.30, 5.35 (m, H-12", 13"), 2.78 (m, H-14"), 5.35, 5.38 (m, H-15", 16"), 2.06 (m, H-17"); ${ }^{13} \mathrm{C}$ NMR $\delta 83.5$ (d, C-1), 33.0 (t, C-2), 71.8 (d, C-3), 43.0 (s, C-4), 48.5 (d, C-5), 82.3 (d, C-6), 46.3 (d, C-7), 85.5 (s, C-8), 46.3 (d, C-9), 43.6 (d, C-10), 50.5 ($s, C-11$), 28.1 ($\mathrm{t}, \mathrm{C}-12$), 39.4 (d, C-13), 75.3 (d, C-14), 38.5 (t, C-15), 82.8 (d, C-16), 61.3 (d, C-17), 77.5 (t, C-18), 48.5 (t, C-19), 47.8 (t, C-20), 13.2 (q, C-21), 55.6 (q, OM e-1), 58.0 (q, OMe-6), 56.7 (q, OMe16), 59.1 ($q, O M$ e-18), 165.9 ($s, C=O V r$), 122.8 ($s, C-1^{\prime}$), 110.3 (d, C-2'), 148.6 (s, C-3'), 153.0 (s, C-4'), 112.0 (d, C-5'), 123.7 (d, C-6'), 172.5 ($\mathrm{s}, \mathrm{C}=\mathrm{O} 1^{\prime \prime}$), 34.8 ($\mathrm{t}, \mathrm{C}-2^{\prime \prime}$), 24.3 (t, C-3"), 29.1 (t, C-4"), 29.1 (t, C-5", 6"), 29.6 (t, C-7"), 27.2 (t, C-8"), 130.2 (d, C-9"), 128.2 (d, C-10"), 25.5 (t, C-11"), 127.0 (d, C-12"), 127.7 (d, C-13"), 24.3 (t, C-14"), 127.7 (d, C-15"), 131.9 (d, C-16"), 20.6 (t, C-17"), 14.3 (q, C-18"); ESIMS m/ z $892.5[\mathrm{M}+1]^{+}$for $\mathrm{C}_{52} \mathrm{H}_{77} \mathrm{NO}_{11}$.

3,13-Diacetylpseudaconitine (10). ${ }^{12}$ Pseudaconitine ($80 \mathrm{mg}, 0.116 \mathrm{mmol}$) was dissolved in acetyl chloride (2 mL), and the reaction mixture was left at room temperature in a glass-stoppered flask for 3 days. Acetyl chloride was evaporated in vacuo, and the residue, in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, was basified to pH 10. Extraction of the base with $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \times 3$) gave a yellow foam (84 mg) that crystallized from $\mathrm{Me}_{2} \mathrm{CO}$-hexane (43 mg , $51 \%), \operatorname{mp} 142-143^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+19.1^{\circ}$ (c 1.41); IR $v_{\max } 1730$, 1600, 1573, 1280, 1225, 1199, 1020, $765 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 1.08(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{H}-21), 1.28$ (3H, s, C-8, OAc), 2.00 (3H, s, C-13, OAc), 2.03 (3H, s, C-3, OAc), 1.94 and 3.50 (m, H-12), 2.08 (m, H-10), $2.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}$, $\mathrm{H}-5$), 2.38 (m, H-2), 2.45 and 3.00 (m, H-15), 2.70 (m, $\mathrm{H}-19), 2.84$ (dd, J $9,10=5 \mathrm{~Hz}, \mathrm{~J} 9,14=5 \mathrm{~Hz}, \mathrm{H}-9$), 2.90 (1H, br s, H-17), 2.99 (1H, s, H-7), 3.15 (6H, s, C-6, 18, OMe), 3.19 (3H, s, C-1, OMe), 3.33 (3H, s, C-16, OMe), 3.89 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Vr}, \mathrm{OMe}$), 3.07 (m, H-1), 3.98 (m, H-16), 2.92 and $3.81(\mathrm{~m}, \mathrm{H}-18), 4.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{H}-6), 4.88$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11,6 \mathrm{~Hz}, \mathrm{H}-3$), $5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{H}-14$), $6.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}$, H-2'), 7.65 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\delta 81.6$ (d, C-1), 31.6 (t, C-2), 71.5 (d, C-3), 42.3 (s, C-4), 46.2 (d, C-5), 83.4 (d, C-6), 49.2 (d, C-7), 85.2 (s, C-8), 43.8 (d, C-9), 41.2 (d, C-10), 49.9 (s, C-11), 35.2 (t, C-12), 82.1 ($\mathrm{s}, \mathrm{C}-13$), 76.9 (d, C-14), 39.7 (t, C-15), 80.1 (d, C-16), 61.2 (d, C-17), 71.6 (t, C-18), 46.6 (t, C-19), 48.9 (t, C-20), 13.4 (q, C-21), 56.0 (q, OMe-1), 58.1 (q, OM e-6), 58.2 (q, OMe-16), 58.8 (q, OMe-18), 55.8 and 56.0 (each q, Vr OM e), 166.1 ($\mathrm{s}, \mathrm{C}=\mathrm{O} V r$), 122.7 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 110.5 (d, C-2'), 148.7 ($\mathrm{s}, \mathrm{C}-3^{\prime}$), 153.1 ($\mathrm{s}, \mathrm{C}-4^{\prime}$), 112.2 (d, C-5'), 124.1 (d, C-6'), 170.3 s and 21.2 q (OAc-3), 170.3 s and 21.4 q (OAc-13), 169.7 s and $21.6 \mathrm{q}(\mathrm{OAc}-8)$; HRFABMS m/ z $774.3689[\mathrm{M}+1]^{+}$for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{NO}_{14}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 774.3700).

13-Acetylpyrodelphinine (11). 13-Acetyldelphinine ($40 \mathrm{mg}, 0.062 \mathrm{mmol}$) was placed in a vacuum sublimator and evacuated for 1.5 h . The apparatus was then immersed in an oil bath preheated to $200^{\circ} \mathrm{C}$ and heated for 2 h . The cooled product was dissolved in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, and the solution was passed through a small $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral, activity III) column. The column was washed with an additional amount of $\mathrm{CHCl}_{3}(70$ mL). Evaporation of the eluate gave a yellow foam of 11, which crystallized from benzene-hexane as fine cubes ($27 \mathrm{mg}, 51 \%$): mp $105-107{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+90.6^{\circ}$ (c 1.126); IR $v_{\max }$ 1730, 1600, 1280, 1235, 1095, 1052, 1020, $710 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.04$ (3H, s, C-13, Ac), 2.38 (3H, s, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 3.23(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.28$ and 3.44 (each 3 H , $\mathrm{s}, 2 \times \mathrm{OMe}), 2.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-7), 2.25(\mathrm{~m}, \mathrm{H}-5)$, 2.43 and 2.78 (m, H-19), 2.90 (1 H , br s, H-17), 3.00 (m, $\mathrm{H}-10), 3.03$ (m, H-9), 3.05 (m, H-1), 3.31 and 3.59 (m, H-18), 4.13 (1H, d, J = $6.5 \mathrm{~Hz}, \mathrm{H}-6), 4.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.4 \mathrm{~Hz}, \mathrm{H}-16), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-14), 5.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5$ $\mathrm{Hz}, \mathrm{H}-15), 7.41\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.53(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right) ; 8.11\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8,11.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}\right)$, ${ }^{13} \mathrm{C}$ NMR $\delta 85.8$ (d, C-1), 25.1 (t, C-2), 36.9 ($\mathrm{t}, \mathrm{C}-3$), 39.9 ($\mathrm{s}, \mathrm{C}-4$), 48.0 (d, C-5), 83.5 (d, C-6), 50.2 (d, C-7), 145.0 (s, C-8), 47.2 (d, C-9), 44.6 (d, C-10), 57.8 (s, C-11), 35.2 (t, C-12), 84.7 (s, C-13), 78.8 (d, C-14), 116.8 (d, C-15), 79.7 (d, C-16), 74.8 (d, C-17), 80.2 (t, C-18), 56.4 (t, C-19), 42.7 (q, C-20), 56.4 (q, OMe^{2}), 57.3 ($q, \mathrm{OMe-6)}$,58.1 (q, OMe-16), 59.2 ($\mathrm{q}, \mathrm{OMe-18)}$,166.8 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ benzoyl), 130.5 (s, C-1'), 130.2 (d, C-2', 6'), 128.1 (d, C-3', 5'), 132.7
(d, C-4'), 170.6 (s) and 21.8 (q) (OAc-13); ESIMS m/ z $582.3[\mathrm{M}+1]^{+}$for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NO}_{8}$.

13-Acetyldelphinine \mathbf{N}-oxide (13). 13-Acetyldelphinine ($100 \mathrm{mg}, 0.156 \mathrm{mmol}$) was dissolved in CHCl_{3} (30 mL), and the solution was added to a solution of m-CPBA ($200 \mathrm{mg}, 1.16 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 5 h . The reaction solution was then passed through a small column of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Woelm, activity III), and the column was eluted with more $\mathrm{CHCl}_{3}(70 \mathrm{~mL})$. The residue left after evaporation of the eluate was fractionated on a SiO_{2} rotor of a Chromatotron. Fractions 2939 eluted with EtOAc-MeOH (60:40) were combined on the basis of TLC results to give $\mathbf{1 3}$ as an amorphous white solid ($43 \mathrm{mg}, 41.9 \%$): $[\alpha]_{\mathrm{D}}+7.3^{\circ}$ (c 1.12); IR $v_{\text {max }}$ 1721, 1705, 1600, 1280, 1270, 1100, 1095, 980, 850, 765 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 1.24$ (3H, s, OAc-8), 1.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.01 (3H, s, OAc-13), 2.20 (1H, br d, H-5), 2.25 (m, $\mathrm{H}-10_{\beta}$), 2.79 ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{H}-9$), 3.09 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-17$), 3.15 (3H, s, OMe-6), 3.23 (3H, s, OMe-18), 3.24 (3H , s, OMe1, 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}$), 3.36 (3H, s, OMe-16), 3.35 and 3.73 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{H}-19)$, $3.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7$ $\left.\mathrm{Hz}, \mathrm{H}-6_{\beta}\right), 4.09$ (m, H-1), 5.12 (1H, d, J $=4.9 \mathrm{~Hz}, \mathrm{H}-14_{\beta}$), $7.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.55(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, H-4'), 8.06 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, 6^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\delta 85.3$ (d, C-1), 23.8 (t, C-2), 34.0 (t, C-3), 40.9 (s, C-4), 47.5 (d, C-C-5), 81.7 (d, C-6), 53.7 (d, C-7), 83.8 (s, C-8), 44.0 (d, C-9), 43.2 (d, C-10), 51.4 (s, C-11), 36.0 (t, C-12), 81.6 ($\mathrm{s}, \mathrm{C}-13$), 76.9 (d, C-14), 38.8 (t, C-15), 79.1 (d, C-16), 79.4 (d, C-17), 79.6 (t, C-18), 73.9 (t, C-19), 62.3 ($q, C-20$), 56.1 (q, OM e-1), 58.1 (q, OM e-6), 58.3 (q, OMe-16), 59.0 ($\mathrm{q}, \mathrm{OMe} \mathrm{C}$ 18), 166.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ benzoyl), 129.8 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 129.7 (d, C-2', 6^{\prime}), 128.5 (d, C-3', $\left.5^{\prime}\right), 133.2$ (d, C-4'), 170.0 (s) and 21.4 (q) (OAc-8 and 13); HRFABMS m/z $658.3227[M+1]^{+}$for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{NO}_{11}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 658.3227).

N-Deacetyl-8,9-diacetyllappaconitine (14). 8,9Diacetyllappaconitine ${ }^{13}$ ($240 \mathrm{mg}, 0.36 \mathrm{mmol}$) was dissolved in HCl ($5 \mathrm{~mL}, 1 \%$ aqueous), and the solution was refluxed for 1.5 h in an oil bath. The ice-cold reaction mixture was basified to pH 12 with NaOH ($10 \% \mathrm{aq}$) solution and then extracted with $\mathrm{CHCl}_{3}(70 \mathrm{~mL} \times 5)$ to afford a gummy residue (190 mg). The residue was fractionated on a basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotor of a Chromatotron, and the fractions eluted with hexane- $\mathrm{CHCl}_{3}(70: 30)$ gave a homogeneous amorphous solid ($110 \mathrm{mg}, 42.9 \%$) of 14: $[\alpha]_{D}+27.3^{\circ}$ (c 1.3); IR $\nu_{\max } 1730,1685,1620,1590$, 1300, 1255, 1160, 1145, $725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.11$ (3H, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-21$), 2.03 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}$), 3.17, 3.22, 3.41 (each $3 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{OMe}$), $4.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.5.1 \mathrm{~Hz}, \mathrm{H}-14_{\beta}\right), 5.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.62$ and 6.67 (each $\left.1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8,7 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right), 7.24(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, H-4'), 7.72 (1H, d, J $=8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$); ${ }^{13} \mathrm{C}$ NMR $\delta 83.9$ (d, C-1), 26.2 ($\mathrm{t}, \mathrm{C}-2$), 31.9 ($\mathrm{t}, \mathrm{C}-3$), 82.9 ($\mathrm{s}, \mathrm{C}-4$), 45.8 (d, C-5), 26.2 ($\mathrm{t}, \mathrm{C}-6$), 47.8 (d, C-7), 85.0 ($\mathrm{s}, \mathrm{C}-8$), 89.1 (s , C-9), 40.2 (d, C-10), 50.4 ($\mathrm{s}, \mathrm{C}-11$), 23.0 (t, C-12), 37.8 (d, C-13), 82.1 (d, C-14), 40.4 (t, C-15), 81.2 (d, C-16), 60.8 (d, C-17), 55.7 (t, C-19), 48.9 (t, C-20), 13.4 (q, C-21), 56.5 (q, OMe-1), 56.6 (q, OMe-16), 57.4 (q, OMe-14), 170.4 (s) and 23.6 q (OAc-8), 169.4 (s) and 22.6 (q) (OAc9), 167.0 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$ anthranoyl), 111.7 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 150.5 (s , C-2'), 116.7 ($\left.d, C-3^{\prime}\right), 133.9$ (d, C-4'), 116.1 (d, C-5'), 131.2 (d, C-6'); HRFABMS m/z $6273281[M+1]^{+}$for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{9}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 627.3282).

8,9-(Methylenedioxy)lappaconine (15). A solution of Iappaconine ($43 \mathrm{mg}, 0.101 \mathrm{mmol}$) p-toluenesulfonic acid ($43 \mathrm{mg}, 0.22 \mathrm{mmol}$), diethoxymethane (2.92 mL , 0.33 mmol), and benzene (dry, 10 mL) was refluxed with a Dean Stark water separator for 14 h . Solvents were removed in vacuo giving a dark residue. A solution of the residue in CHCl_{3} was passed through a small column of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral, activity III), and the column was washed with additional CHCl_{3}. The residue obtained on evaporating CHCl_{3} was fractionated on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotor of a Chromatotron and the homogeneous (TLC) fractions 12-25 eluted with hexane- CHCl_{3} (30: 70), furnished a gum (15, $27 \mathrm{mg}, 61 \%$): $[\alpha]_{\mathrm{D}}+4.7^{\circ}$ (c 0.92); IR $v_{\max } 3450,1150,1120,850,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.06(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-21), 1.57\left(\mathrm{~m}, \mathrm{H}-12_{\alpha}\right), 1.98$ ($\mathrm{m}, \mathrm{H}-12_{\beta}$), 1.85 ($\mathrm{m}, \mathrm{H}-3_{\beta}$), 2.45 ($\mathrm{m}, \mathrm{H}-3_{\alpha}$), 2.31 ($\mathrm{m}, \mathrm{H}-5$), $2.50(\mathrm{~m}, \mathrm{H}-20), 2.50$ and 3.31 (each $\mathrm{m}, \mathrm{H}-19), 2.91(1 \mathrm{H}$, br s, H-17), 3.27 (3H, s, OMe-1), 3.30 (3H, s, OMe-16), 3.33 (3H, s, OMe-14), 3.55 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{H}-14_{\beta}$), 5.09 and 5.45 (each d, J $=2.2 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}$); ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 85.2$ (d, C-1), 26.8 (t, C-2), 37.1 (t, C-3), 71.1 ($\mathrm{s}, \mathrm{C}-4$), 50.0 (d, C-5), 27.4 (t, C-6), 35.5 (d, C-7), 83.0 (s, C-8), 86.1 (s, C-9), 48.1 (d, C-10), 50.9 (s, C-11), 24.2 (t, C-12), 45.6 (d, C-13), 88.5 (d, C-14), 38.7 (t, C-15), 83.0 (d, C-16), 60.4 (d, C-17), 58.1 (t, C-19), 49.0 (t, C-20), 13.4 (q, C-21), 56.7 (q, OMe-1), 57.4 (q, OMe-14), 56.3 (q, OMe-16), 96.6 (t, O-CH 2 -O); HRFABMS m/ z 436.2699 $[\mathrm{M}+1]^{+}$for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{6}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z} 436.2699$).

16-E pipyroaconitine \mathbf{N}-oxide (17). 16-Epipyroaconitine ($72 \mathrm{mg}, 0.123 \mathrm{mmol}$) was dissolved in CHCl_{3} (30 mL), and the solution was added to a solution of $\mathrm{m}-\mathrm{CPBA}(127 \mathrm{mg}, 0.738 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The mixture was stirred for 3 h . The workup was carried out as described for compound 6 above. Purification on an $\mathrm{Al}_{2} \mathrm{O}_{3}$ rotor of a Chromatotron furnished compound 17 (21 mg, 28.4\%) as a yellow foam: $[\alpha]_{D}-7.7^{\circ}$ (c 0.95); IR $\nu_{\max } 3400,1715,1645,1600,1320,1220,1210,1095$, 1045, 990, 935, 890, 805, $750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.42$ (3H, $\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-21$), 2.25-2.45 (m, H-2), 2.37 (br d, H-5), 2.85-2.95 (m, H-1), 3.26, 3.27, 3.31, 3.74 (each $3 \mathrm{H}, \mathrm{s}, 4$ \times OMe), 3.59 (br s, H-17), 3.65 (m, H-16), 5.39 (1H, d,
$\left.\mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{H}-14_{\beta}\right), 7.45\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}, 5^{\prime}\right)$, $7.59\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.95(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}$, H-2', 6^{\prime}); ${ }^{13} \mathrm{C}$ NMR $\delta 83.5$ (d, C-1), 33.0 (t, C-2), 67.9 (d, C-3), 45.7 ($\mathrm{s}, \mathrm{C}-4$), 47.4 (d, C-5), 84.5 (d, C-6), 49.6 (d, C-7), 45.9 (d, C-8), 37.7 (d, C-9), 44.9 (d, C-10), 51.7 (s, C-11), 32.6 (t, C-12), 76.5 ($\mathrm{s}, \mathrm{C}-13$), 78.1 (d, C-14), 210.5 ($\mathrm{s}, \mathrm{C}-15$), 85.7 (d, C-16), 77.1 (d, C-17), 72.6 ($\mathrm{t}, \mathrm{C}-18$), 66.7 (t, C-19), 67.1 (t, C-20), 73 (q, C-21), 56.8 (q, OMe1), 58.8 (q, OM e-6), 62.0 (q, OM e-16), 58.9 ($q, O M e-18$), 165.9 (s, C=O benzoyl), 129.1 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 129.6 ($\mathrm{d}, \mathrm{C}-\mathrm{Z}^{\prime}$, 6^{\prime}), 128.6 (d, C-3', 5'), 133.7 (d, C-4'); HRFABMS m/ z $602.2965[\mathrm{M}+1]^{+}$for $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{NO}_{10}$ (calcd $[\mathrm{M}+1]^{+} \mathrm{m} / \mathrm{z}$ 602.2965).

Acknowledgment. Financial support by grant HL 32562 from the National Institutes of H ealth, Bethesda, Maryland, is gratefully acknowledged.

References and Notes

(1) Benn, M. H.; J acyno, J. M. Alkaloids, Chemical and Biological Perspectives; Pelletier, S. W., Ed.; J ohn Wiley: New York, 1983; Vol 1, Chapter 4, pp 153-210.
(2) Catteral, W. A. Ann. Rev. Pharmacol. Toxicol. 1980, 20, 15-43.
(3) Ameri, A.; Gleitz, J.; Peters, T. Brain Res. 1996, 738, 154-157.
(4) Kimura, T.; Takada, M.; Nojima, H.; Kimura, M. Biol. Pharm. Bu11. 1996, 19, 1440-1442.
(5) Chiao, H.; Pelletier, S. W.; Desai, H. K.; Rebagay, W. R.; Caldwell, R. W. Eur. J. Pharmacol. 1995, 283, 103-106.
(6) Bai, Y.; Desai, H. K.; Pelletier, S. W. J. Nat. Prod. 1994, 57, 963-970.
(7) Desai, H. K.; Trumbull, E. R.; Pelletier, S. W. J. Chromatogr. 1986, 366, 439-444.
(8) Pelletier, S. W.; Desai, H. K.; Kulanthaivel, P.; J oshi, B. S. Heterocycles 1987, 26, 2835-2840.
(9) Bai, Y.; Desai, H. K.; Pelletier, S. W. J. Nat. Prod. 1995, 58, 929-933.
(10) When this reaction was carried out by heating in vacuum no reaction took place. All of the p -anisic acid sublimed and delphinine was recovered unchanged.
(11) J oshi, B. S.; Desai, H. K.; Pelletier, S. W.; Snyder, J . K.; Zhang, X.; Chen, S. Y. Phytochemistry 1990, 29, 357-358.
(12) Compound $\mathbf{1 0}$ is a known natural alkaloid isolated from Aconitum ferox. Purusothaman, K. K.; Chandrasekharan, S. Phytochemistry 1974, 13, 1975-1977. Its ${ }^{13} \mathrm{C}$ NMR assignments are reported here for the first time.
(13) Ross, S. A.; Pelletier, S. W. Heterocycles 1991, 32, 1307-1315.

[^0]: * To whom correspondence should be addressed. Tel.: (706) 5425800. Fax: (706) 542-5804. E-mail: pelletier@sunchem.chem.uga.edu
 † The University of Georgia.
 § The Medical College of Georgia.

